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STATS 306B: Unsupervised Learning Spring 2014

Lecture 6 — April 16

: Peyton Greenside, Natalie Telis

Lecturer: Lester Mackey Sei

6.1 Hierarchical Clustering

Last time, we introduced the task of hierarchical clustering, in which we aim to produce
sters. This contrasts sharply with
do

clustering methods like k-means whi
In this lecture, we will continue our discussion
of the standard model-free approaches to hies
principal paradigms for hierarchical clustering;

rchical clus

oring by considering both of the

1. Agglomerative / Bottom-Up Clustering, in which we recursively merge similar clusters

2. Divisive / Top-Down Clustering, in which we recursively sub-divide into dissimilar sub
clusters

The standard approaches in both settings are greedy fashion and so typically not optimal in
any sense.

6.2 Agglomerative Clustering
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An Unusual Example: Clustering Great Paintings o
After clustering 57 paintings by ratings for ition, color, drawing type, and expression, 2
the authors discussed in slide 9 generated a dendrogram of great artwork labeled by painter.
The authors note that the value of this analysis is ds dent on the i ing hypotl o
generated by the clustering, as in the example above.
6.4.2 Practicalities and Challenges
Model selection presents chall similar to k- cluster sel

1 €

Model selection (choosing truncation level, referred to in 6.4.1, in A Brief Note...) is a
challenge in creating meaningful interpretations of hierarchical clusterings. Although there
is no single solution to interpretation, many of the methods we have discussed for k selection —
in k-means may apply equally well here.




